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Small Strain Stiffness Model for Crisp 
 
Introduction 
 
Recent advances in strain measuring devices for soil samples have shown that soils exhibit very large stiffness at 
very small strains of the order of 0.004%. Jardine et. al  (1984) published laboratory measurements of soil 
stiffness using local strain measurements devices that could resolve mean axial strains as low as 0.002%. Their 
data show undrained 'elastic' moduli continually reducing from strains as low as 0.005% until failure is 
approached. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Data for low strain stiffness of London Clay after Jardine et. al. (1984) 
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Stiffness Formulations  
 
Professor Mike Gunn introduced a simple model based on the laboratory results shown above. 
 
 
The undrained non-linear 'elastic' response of the soil is given by: 
 
q=aεn  
where q is the deviator stress, ε is the deviator strain and a and n are soil parameters obtained as described below. 
This power law expression can be manipulated in a very simple way to give expression for the secant stiffness 
 
sec.Eu=aεn-1  

 

and the tangential stiffness as  
tan.Eu=naεn  

 
The parameters a and n for the model are recovered from the secant Young's modulus measures at two strain 
levels in an undrained triaxial test: 
 

1
11

−= n
u aE ε  

1
22

−= n
u aE ε  

 
Using Eu1 and Eu2 together with the equation for the secant stiffness, one can obtain an expression for n as 
follows: 

)/log(/)/log(1 2121 εεuu EEn +=  

and  
n

uEa −= 1
11ε  

 
For example, if we adopt values of Cu=100 kPA, then 

1000/sec =uu CE for a strain of 0.01% 

400/sec =uu CE for a strain of 0.1%, 

then the above would give values of a=2500kPa and n=0.6. 
The model introduced by Mike Gunn incorporates a Tresca yield surface to allow for plastic yielding when the 
deviator stress reaches the limit given by the shear strength Cu. In addition, the model allows for the variation of 
C and a with depth according to the formulae: 
 

)( yymCC oco −+=  

)( yymaa oao −+=  

where Yo is the elevation at which the undrained Cohesion Co and the parameter ao are measured, mc and ma 
represent the rate of change of C and a with depth respectively.  
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Figure 2  Material Properties in SAGE-CRISP v 4 

 
There is a value of strain (εc) below which the stiffness is taken to be constant (and equal to the secant stiffness 
at εc), so the actual stress strain curve and variation of modulus with strain is as shown in figure below, where a 
value of εc=0.001% is assumed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 Stiffness relations using q=aεεn for data of Jardine et. al. (1984) 
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Validation Tests 
 
We setup a simple finite element mesh for a triaxial test. This will consist of two LST axi-symmetric element as 
shown below. 
 
 

 
 
In order to satisfy equilibrium of stresses, we apply a pressure of 150 KN/M2 to each side as shown above. 
 
The in-situ stresses are applied as shown below. Notice that σy   increases with depth due to unit weight of soil 
 

 
 
 
 
 
 
 
 
 
 
 
 



6 

 
Test 1 
For the first test, we will set the shear strength C to a very high value so that the sample behaves elastically.  
 

 
 
 
 
 
We now apply a vertical pressure of 50 KN/M2 in one load block and then reveres this pressure in the subsequent 
load block as shown in the two figures below. 
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We use 10 increments for each load block. In addition we use the option (apply out of balance forces), or the 
fully iterative solution using Modified Newton Raphson method. This is done through File>Project Setup. 
 
Plotting the results of vertical strain (natural log) against deviatoric stress shows that the unloading path follows 
the loading path as shown below 
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Test 2 
 
We now use a value of 20KN/M2 for the shear strength as shown below and re-run the analysis above  
 

 
 
 
The graph of q/2 against natural log of vertical strain shows that the graph reaches a limit of 20 which 
corresponds to the undrained shear strength specified in the material properties.  
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Concluding remarks 
 
The assumptions made in deriving the model, and the details of its implementation into CRISP mean that there 
are some important limitations on its use.  
• The model has been developed on the basis of data from undrained tests, and so it should be used to 

predict undrained deformation (or drained with poisson's ratio =0.49) 
• The model is designed for modelling situations where loading is monotonic. Contours of constant 

elastic shear modulus are circles in the π plane of principal stress space, centred upon the point 
corresponding to the stresses at the start of the analysis. In other words, the stiffness in unloading is 
just the same as the stiffness in loading at the equivalent strain level. 

 
Before the relationship q=aεn was adopted, previously proposed non-linear elastic relationships for soil due to 
Naylor (1981) and Duncan and Chang (1969) were considered and rejected. Both of these models have two 
parameters describing a non-linear stress-strain curve and the parameters can be obtained in a similar fashion to 
the procedure described above, fitting the non-linear curves at low strain values. If this is done, for example with 
the data quoted above, both of these models predict that the soil fails at a value of q about one third of the value 
actually seen. In practice one would use these models with the maximum value of q correctly represented, but 
this will be at the cost of a poor representation of stiffness at some values of low strains. In contrast, the 
relationship q=aεn gives a reasonable fit for stiffness until plastic yielding starts (at a strain of about 1.5%) 
In fact the model described here has some similarity to that described by Jardine (1986). The main difference 
seems to be that their equation matches the data more precisely at the cost of some extra complexity in the form 
of the equation and the derivation of material parameters. 
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